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ABSTRACT

Context. For magnetically driven events, the magnetic energy of the system is the prime energy reservoir that fuels the dynamical
evolution. In the solar context, the free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators
used in space weather forecasts to predict the eruptivity of active regions. A trustworthy estimation of the magnetic energy is therefore
needed in three-dimensional (3D) models of the solar atmosphere, e.g., in coronal fields reconstructions or numerical simulations.
Aims. The expression of the energy of a system as the sum of its potential energy and its free energy (Thomson’s theorem) is strictly
valid when the magnetic field is exactly solenoidal. For numerical realizations on a discrete grid, this property may be only approxi-
mately fulfilled. We show that the imperfect solenoidality induces terms in the energy that can lead to misinterpreting the amount of
free energy present in a magnetic configuration.
Methods. We consider a decomposition of the energy in solenoidal and nonsolenoidal parts which allows the unambiguous estimation
of the nonsolenoidal contribution to the energy. We apply this decomposition to six typical cases broadly used in solar physics. We
quantify to what extent the Thomson theorem is not satisfied when approximately solenoidal fields are used.
Results. The quantified errors on energy vary from negligible to significant errors, depending on the extent of the nonsolenoidal
component of the field. We identify the main source of errors and analyze the implications of adding a variable amount of divergence
to various solenoidal fields. Finally, we present pathological unphysical situations where the estimated free energy would appear to
be negative, as found in some previous works, and we identify the source of this error to be the presence of a finite divergence.
Conclusions. We provide a method of quantifying the effect of a finite divergence in numerical fields, together with detailed diag-
nostics of its sources. We also compare the efficiency of two divergence-cleaning techniques. These results are applicable to a broad
range of numerical realizations of magnetic fields.
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1. Introduction

Many astrophysical phenomena, such as stellar and solar jets,
flares, and coronal mass ejections, are driven magnetically (e.g.,
Tajima & Shibata 2002; Schrijver & Zwaan 2008, and references
therein). Magnetically dominated plasmas are systems where the
long-range, magnetic interaction dominates other forces, e.g.,
plasma pressure and gravitational forces. A typical example is
the low-corona (e.g., Priest 2003; Golub & Pasachoff 2009).
There, the amount of energy associated with the magnetic field
is much larger than other energy sources, and the dynamics of the
coronal configuration is determined by the evolution of its mag-
netic field (e.g., Forbes 2000). This includes solar flares, where
large currents develop in relatively small volumes (e.g., Shibata
& Magara 2011; Aulanier et al. 2012), and coronal mass ejec-
tions (CMEs), which are powerful expulsions of coronal material
that change the local configuration of the magnetic field drasti-
cally (e.g., Forbes 2000; Amari et al. 2003; Fan 2010). In the
coronal plasma, the magnetic energy is therefore the prime en-
ergy reservoir that fuels the dynamical evolution of these events.

However, not all the magnetic energy is available for con-
version into other forms of energy. Without changing the field
significantly at the boundaries of the considered volume, the
energy that can be converted into kinetic and thermal ener-
gies is given by the free energy, i.e., by the difference between

� Appendices are available in electronic form at
http://www.aanda.org

the total magnetic energy and the energy of the corresponding
current-free (potential) field. This very general result is known
as Thomson’s theorem, and it is based on the decomposition of
the field into the sum of a current-carrying and a potential part.
It does not depend on the presence of other forces, and is valid
at any instant in time.

The separation in the potential and free energies of
Thomson’s theorem is especially relevant for systems like the
low-coronal field, that have different evolution time scales, as
follows. The time scale of the coronal potential field is de-
termined by the underlying photosphere, which is an inertia-
dominated plasma, unlike the corona. This implies that the mag-
netic field at the photosphere has an evolution time scale that is
much longer than the coronal one and that it is relatively insen-
sitive to coronal changes. Since the magnetic field at the photo-
sphere largely determines the coronal field’s current-free compo-
nent, the latter also evolves on the long photospheric time scale.
As a consequence of Thomson’s theorem, relatively fast events,
such as flares and CMEs, can only be powered by converting part
of the magnetic free energy (e.g. Aulanier et al. 2010; Karpen
et al. 2012).

In other words, the magnetic free energy is a sufficient condi-
tion for triggering active events, and it is considered in the fore-
cast of eruptions in the space weather context (see, e.g., Forbes
et al. 2006; Chen 2011). Therefore, in this and similar appli-
cations, an accurate estimation of the free energy is paramount
for understanding the observed magnetic field dynamics and the
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Table 1. Numerical tests of Thomson’s theorem.

Btest 〈 | fi(B)| 〉 E Ẽp,s ẼJ,s Ẽp,ns ẼJ,ns Ẽmix Sum

BDD 2 × 10−6 1.45 1.00 0.00 4 × 10−5 7 × 10−6 −4 × 10−3 1.00
BTD 3 × 10−6 3.90 0.81 0.16 3 × 10−5 6 × 10−4 0.02 1.00
BMHD 2 × 10−5 1.94 0.94 0.06 1 × 10−6 1 × 10−4 −1 × 10−3 1.00
BEx1 4 × 10−3 4.21 0.79 0.38 5 × 10−4 0.29 −0.46 1.00
BEx2PP 9 × 10−4 1.51 0.88 0.11 2 × 10−4 0.14 −0.12 1.00
BEx2 2 × 10−3 0.72 2.29 0.14 3 × 10−4 0.94 −2.38 1.00
Btest,s

BDD,s 1 × 10−18 1.44 1.00 0.00 4 × 10−5 5 × 10−5 7 × 10−4 1.00
BTD,s 4 × 10−21 3.95 0.84 0.16 3 × 10−5 4 × 10−5 −3 × 10−4 1.00
BMHD,s 3 × 10−21 1.94 0.94 0.06 1 × 10−6 1 × 10−6 −1 × 10−5 1.00
BEx1,s 6 × 10−18 5.98 0.43 0.57 2 × 10−4 5 × 10−3 −6 × 10−3 1.00
BEx2PP,s 2 × 10−17 3.15 0.42 0.58 1 × 10−4 2 × 10−3 −3 × 10−3 1.00
BEx2,s 8 × 10−18 0.99 0.61 0.39 2 × 10−4 1 × 10−3 −2 × 10−3 1.00

Notes. The employed test fields, defined in Sect. 4, are named in the leftmost Col.. Second Col., 〈 | fi| 〉: the divergence metric of the fields (see
Eq. (C.2)). Third Col., E: energy of the test fields in units of 1032 erg. The BDD, BTD, BMHD fields (and their corresponding solenoidal fields BDD,s,
BTD,s, BMHD,s) were rescaled assuming a maximum value of the photospheric vertical field equal to 300 G and a typical distance between the
sunspot’s centers of (50, 50, 120) Mm, respectively. The successive five columns are the different contributions to Eq. (9), and “Sum” corresponds
to their sum. All terms from “Ẽp,s” to “Sum” are normalized by E. Ẽp,s is the magnetic energy of the potential field Bp,s, ẼJ,s that of the solenoidal
component of the current-carrying one BJ,s, Ẽp,ns and ẼJ,ns are the contributions associated to the divergence of Bp and BJ, respectively, Ẽmix is a
mixed potential-current carrying term (see Eq. (8) for their definitions).

maximum energy that can be released in a flare or in a CME
(Emslie et al. 2012; Aulanier et al. 2013, and references therein).

On the other hand, the free energy only provides an upper
limit to the energy available for coronal dynamics. For instance,
in the case of a flare/eruption, the post-event magnetic field con-
figuration does not need to be potential (see, e.g., Berger 1985;
Taylor 1986; Low 2001). Indeed, flare (reconnected) loops are
frequently observed to be sheared after a flare/eruption (see e.g.,
Asai et al. 2003; Lin et al. 2010; Savage et al. 2012, and ref-
erences therein), a feature that is also reproduced in numerical
simulations (Aulanier et al. 2012). This is an indication that post-
event configurations have finite free energy, and the actual en-
ergy removed by the event is given by the difference between
the free energy of the pre- and post-event configurations. An
assessment of the true energy budget related to a flare/eruptive
event requires an accurate and reliable estimation of the mag-
netic energy.

Another motivation of this study is to address the occurrence
of unphysical magnetic configurations. This is the case in some
nonlinear force-free field (NLFFF) extrapolations when nonpre-
processed, observed vector magnetograms are used as boundary
conditions. The most obvious evidence of the nonphysical nature
of some solutions is when the energy of the extrapolated field is
lower than the potential field energy. This happens, for instance,
in some of the solutions given in Table 3 of Metcalf et al. (2008)
and Table 1 of Schrijver et al. (2008) for three of the consid-
ered extrapolation methods, including one used in the present
manuscript (Valori et al. 2010). More generally, for all methods,
the estimated coronal energy depends on the manipulations per-
formed on the observed data prior to their use in the actual ex-
trapolation. (This step is called preprocessing, Wiegelmann et al.
2006; Fuhrmann et al. 2007.) A significant part of the energy dif-
ference can eventually result from the details of the undergone
preprocessing.

As a result, the understanding of basic physical processes
in the solar atmosphere requires an accurate estimations of the
magnetic free energy. On the other hand, coronal models like
NLFFF extrapolations, have shown that such accurate estima-
tions are not easily obtained. In such cases, Thomson’s theorem

can be exploited to address the accuracy of (free) energy estima-
tions. The fundamental assumption in Thomson’s theorem is that
the magnetic field is solenoidal. Such a property is only approxi-
mately fulfilled in numerical simulations and, more generally, in
magnetic fields that are discretized on a mesh. A quantitative es-
timation of the effects caused by nonvanishing field divergence
is complicated by its nonlocal nature.

The main aim of this article is to quantify the effect of the
presence of a nonsolenoidal component on the energy of a dis-
cretized magnetic field. This is studied using six different test
magnetic fields that are a sample of the typical and characteris-
tic examples used in the context of coronal solar physics. In the
first part of the article, the energy of each test field is decom-
posed and interpreted using an extension of Thomson’s theorem
that can be applied to nonsolenoidal fields. In the second part
we study how the energy changes, starting from a solenoidal
version of each test field and adding a parametric divergent
component. The method and results of this study are of inter-
est when working with any discretization of magnetic fields,
e.g., for 3D coronal magnetic field extrapolations, as well as for
magneto-hydrodynamic (MHD) simulations.

In Sect. 2 the Thomson theorem for the energy of a mag-
netic field is summarized. The extension to nonsolenoidal, dis-
cretized fields is presented in Sect. 3. Section 4 introduces the six
discretized fields together with their corresponding solenoidal
versions that are used as test cases for applying our analysis,
whose results are given in Sect. 5. Possible source of errors in
our analysis are sort out in Sect. 6. Then, in Sect. 7 we present
the parametric study of the energy dependence on the amount
of divergence added to solenoidal magnetic fields. An analysis
specific to numerical fields obtained by NLFFF extrapolations
of observed vector magnetograms is presented in Sect. 8, and
conclusions are finally given in Sect. 9.

2. Magnetic energy of solenoidal fields

We first consider the decomposition of the magnetic energy
for perfectly solenoidal fields. By decomposing the field B
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as the sum of a potential, Bp = ∇φ, and a current carrying
contribution, BJ,

B = Bp + BJ,

the total magnetic energy E in CGS-Gaussian units in a vol-
umeV is given by

E ≡ 1
8π

∫
V

dV B2

= Ep + EJ +
1

4π

∫
∂V

(φBJ) · dS − 1
4π

∫
V
φ(∇ · BJ) dV, (1)

where

Ep ≡ 1
8π

∫
V

B2
p dV, EJ ≡ 1

8π

∫
V

B2
J dV,

∂V represents the boundary of V, dS = n̂ dS , and n̂ is the ex-
ternal normal to the bounding surface.

Two conditions are classically considered:

[a] n̂ · (B − Bp)|∂V = 0, i.e., the potential field Bp is computed
from the same distribution of normal field of B on the bound-
ary of V. This condition implies that n̂ · BJ|∂V = 0 and the
surface integral vanishes in Eq. (1);

[b] ∇ · BJ = 0, in which case also the rightmost volume integral
in Eq. (1) vanishes.

If these two conditions hold, then

E = Ep + EJ, (2)

and the energy of a magnetic field is bounded from below
by the energy of the corresponding potential field that has the
same distribution of the normal component on the boundary
of the considered volume. When applied to discretized fields,
the above result holds under the implicit assumption that fields
are numerically well resolved, yielding, in particular, continuous
derivatives.

The mathematical equivalent of Eq. (2) is known as
Thomson’s (or Dirichlet’s) theorem, see e.g., Lawrence (1998).

To satisfy the above requirement [a], the scalar poten-
tial φ(x, y, z) is computed as the solution of the Laplace
equation
{
Δφ = 0
(∂φ/∂n̂)|∂V = (n̂ · B)|∂V. (3)

In practical applications, Eq. (3) can be solved numerically using
standard methods. In the applications presented in this paper,
the Poisson solver included in the Intelr© Mathematical Kernel
Library was used.

3. Magnetic energy of nonsolenoidal fields

In this section we provide expressions for evaluating errors in the
energy that stem from an imperfect fulfillment of the solenoidal
property, as is the case for discretized magnetic fields. In deriv-
ing Eq. (1) the divergence theorem, i.e.,
∫
V
∇ · u dV =

∫
∂V

u · dS, (4)

is used, which may not be fulfilled by the techniques employed
in constructing the numerical representations of magnetic fields

or in their analysis. Moreover, if the numerically computed po-
tential field Bp and current-carrying field BJ have a finite diver-
gence, additional contributions can appear in the corresponding
energy terms, Ep and EJ.

We, therefore, seek a formulation of Eq. (1) for applica-
tions to numerical, nonsolenoidal fields that includes all possible
sources of errors separately, that satisfies the requirement [a],
and that includes only volume integrals (thus avoiding using
the divergence theorem). To obtain that, we first introduce the
method of computing the potential and current-carrying parts.

3.1. Helmholtz decomposition of the potential part of the field

The accuracy in the numerical solution of Eq. (3) is limited,
which may result in a finite divergence of the potential field. To
quantify its effect, we can write

Bp = Bp,s + ∇ζ, where

{
Δζ = ∇ · Bp
(∂ζ/∂n̂)|∂V = 0, (5)

which separates in Bp the solenoidal part, Bp,s ≡ Bp −Bp,ns from
the nonsolenoidal one, Bp,ns ≡ ∇ζ. This is equivalent to adopting
the Helmholtz decomposition for the vector Bp, together with the
choice that all the nonsolenoidal component of Bp is contained
in ∇ζ. Finally, the boundary condition for ζ(x, y, z) in Eq. (5)
is chosen such that Bp,s satisfies the same boundary condition
as Bp; i.e., they both fulfill requirement [a].

In practical applications, we first solve Eq. (3) numerically
to determine φ, then we compute Bp = ∇φ, and finally we over-
write the values of the normal components of Bp on each bound-
ary according to Eq. (3). Since the latter operation enforces the
requirement [a], then any residual inaccuracy in the solution of
Eq. (3), close to the boundary, implies a jump in the field, i.e.,
a finite divergence that adds to the divergence of the potential
field discussed above. Second, we solve Eq. (5) to compute the
residual nonsolenoidal component in Bp.

3.2. Helmholtz decomposition of the current-carrying part
of the field

Using the Helmholtz decomposition on BJ we define a
solenoidal component, BJ,s, and a nonsolenoidal one, BJ,ns, such
that

BJ ≡ BJ,s + ∇ψ, where

{
Δψ = ∇ · BJ
(∂ψ/∂n̂)|∂V = 0, (6)

the nonsolenoidal part of BJ being: BJ,ns ≡ ∇ψ. The boundary
condition for ψ in Eq. (6) is chosen to have the same boundary
condition for BJ,s and BJ, i.e., to fulfill the requirement [a]. As
for the potential field, the required values of BJ,s at the bound-
aries (i.e., zero in this case) are overwritten onto the solution of
Eq. (6) which is obtained numerically, so that any error in match-
ing these values by ψ(x, y, z) reduces to a finite jump close to the
boundaries.

Finally, we notice that this method is often used to remove
the divergence of a vector field (Brackbill & Barnes 1980, some-
times referred to as “projection method”), and it has the property
of conserving the current, i.e., ∇ × BJ = ∇ × BJ,s.

3.3. Gauge-invariant decomposition of the magnetic energy

We now summarize the procedure for the decomposition of the
magnetic field. For a given numerical magnetic field B, we solve
Eq. (3) numerically and compute the corresponding potential
component Bp and current-carrying component BJ = B − Bp.
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Next, we compute the solenoidal component Bp,s = Bp −∇ζ and
the nonsolenoidal component Bp,ns = ∇ζ of the potential field
by solving Eq. (5) numerically. Similarly, the numerical solution
of Eq. (6) provides the solenoidal component BJ,s = BJ−∇ψ and
the nonsolenoidal component BJ,ns = ∇ψ of the current-carrying
part of B. The values of the different components at the bound-
ary are such that the condition [a] is satisfied (Sect. 2). Finally,
by substituting the field decomposition in E =

∫
V B2dV/8π and

grouping it again as in Eq. (1), we obtain

E = Ep,s + EJ,s + Ep,ns + EJ,ns + Emix, (7)

with

Ep,s =
1

8π

∫
V

B2
p,sdV, Ep,ns =

1
8π

∫
V
|∇ζ |2dV

EJ,s =
1

8π

∫
V

B2
J,sdV, EJ,ns =

1
8π

∫
V
|∇ψ|2dV

Emix =
1

4π

(∫
V

Bp,s · ∇ζ dV +
∫
V

BJ,s · ∇ψ dV

+

∫
V

Bp,s · ∇ψ dV +
∫
V

BJ,s · ∇ζ dV

+

∫
V
∇ζ · ∇ψ dV +

∫
V

Bp,s · BJ,s dV
)
. (8)

All terms in Eq. (7) are positively defined, except for Emix. For
a perfectly solenoidal field, it is Ep,s = Ep, EJ,s = EJ, Ep,ns =
EJ,ns = Emix = 0, and Eq. (7) reduces to Eq. (2).

Finally, Eq. (7) is normalized such that

1 = Ẽp,s + ẼJ,s + Ẽp,ns + ẼJ,ns + Ẽmix, (9)

where the tilde indicates that the corresponding definition in
Eq. (8) is divided by E.

Using the divergence theorem, Eq. (4), and the condition [a],
several terms in the above expressions could be simplified.
However, since practical test fields may be obtained with meth-
ods that do not insure that the divergence theorem holds nu-
merically, we have kept all the terms in Eq. (8). Indeed, the
simplification obtained by using the divergence theorem results
in mixing other numerical issues with the issue of the finite di-
vergence, producing cumbersome results, up to the point where
Eq. (7) is not satisfied numerically. Moreover, the direct appear-
ance in the integrals of the scalar potentials, rather then their
gradients, introduces an undesired gauge-dependence.

3.4. Sources of the violation of the Thomson theorem

We summarize which are the source of errors that we consider
in Eq. (7). First, the energy is affected by the finite divergence
of the current-carrying part of the magnetic field, which enters
the EJ,ns and Emix terms. Additionally, the potential field may
have a finite divergence, owing to the limited numerical accuracy
of the solution of Eq. (3), both in the volume and close to its
boundary. These effects are contained in the Ep,ns and Emix terms.

As long as these are the only source of errors, then the sum
of the terms on the righthand side of Eq. (7) must be equal to the
total energy E computed using B directly, and Eq. (7) must hold
numerically even for nondivergence-free fields. Equivalently but
using normalized quantities, the sum on the righthand side of
Eq. (9) must be equal to one. We show in Sect. 5 that the to-
tal energy is indeed retrieved by the decomposition we adopted,
allowing us to identify the source and extent of the eventual vio-
lation of Thomson’s theorem, Eq. (2).

3.5. Accuracy of the decomposition of the energy equation

A further step is the assessment of the accuracy of the decompo-
sition, Eq. (7). First, we address how effective the decomposition
in the solenoidal and nonsolenoidal parts is in concrete numeri-
cal applications in Sect. 6.1.

Second, the continuity condition, implicit in the derivation
of Eq. (7), implies that numerical derivatives can be computed
precisely enough in the employed discretization. This may not
be the case in some numerical applications, e.g., when observed
values are used as boundary conditions for computing magnetic
fields. The continuity of the fields in relation to small scales is
discussed in Sect. 8.

Finally, our decomposition employs the numerical solution
of Laplace and Poisson equations. We briefly recall the condi-
tions for uniqueness of the general Poisson equation{
Δu = f
(∂u/∂n̂)|∂V = g, (10)

where f (x, y, z) is a source term in V, and g is the boundary
value on ∂V. The use of Neumann boundary conditions implies
that the solution u(x, y, z) is only unique up to an additive con-
stant. For Eqs. (3), (5) and (6), the freedom in the additive con-
stant is equivalent to a gauge freedom for the scalar potentials φ,
ζ, andψ, respectively. This gauge dependence is, however, irrele-
vant for Eq. (7), since the energy decomposition is intentionally
derived in a way such that the scalar potentials only appear in
conjunction with the gradient operator.

Integrating Eq. (10) inV and using the divergence theorem,
Eq. (4), we find that source and boundary values must satisfy∫
∂V
g =

∫
V

f , (11)

which is a necessary condition for the uniqueness of the solu-
tion u. This implies that, for Eq. (3) where f = 0 and g = n̂·B|∂V,
the flux of B through ∂V must vanish. For Eq. (5), where f =
∇ · Bp and g = 0, it implies that the volume integral of ∇ · Bp
must vanish. Similarly, for Eq. (6), where f = ∇ · BJ and g = 0,
the volume integral of ∇ ·BJ must vanish. When such conditions
cannot be insured, the uniqueness of the solution is not guaran-
teed. The effect of the violation of Eq. (11) is studied in Sect. 6.2.

4. Test fields

To explore the effects of a finite divergence in a representative
sample of practical situations, we consider six test fields Btest
obtained from analytical models, numerical simulations, and
NLFFF extrapolations. Their magnetic configuration is outlined
in the field-line plots in Fig. 1. Furthermore, we consider six
additional test cases Btest,s, which are obtained from each of
the Btest by removing the nonsolenoidal part of the field.

4.1. Discretized analytical test fields

The first test field that we consider is the potential field Btest =
BDD generated by a pair of vertical magnetic dipoles, located
at (0,±yDD, zDD), see, e.g., Eq. (7) in Török & Kliem (2003)
for the analytical expression of the field. We set yDD = 2
and zDD = −1.5, and the field is normalized such that the
z-component has a maximum value equal to unity at the bot-
tom boundary (z = 0). The only currents and finite divergence
errors present in BDD are generated by truncation errors in its
discretization.
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a) BDD b) BTD c) BMHD

d) BEx1 e) BEx2PP f) BEx2

Fig. 1. Selected field lines of the six test cases: a) the potential field of a double dipole, BDD; b) the TD model, BTD; c) the MHD model,
BMHD; d) the NLFFF model of the nonpreprocessed magnetogram of AR 11158, BEx1; e) the NLFFF model of the preprocessed magnetogram of
AR 11024, BEx2PP; f) the NLFFF model of the nonpreprocessed magnetogram of AR 11024, BEx2. The vertical component of the magnetic field at
the bottom boundary is shown on a gray scale, with the positive (respectively, negative) polarity in white (respectively, black). The different line
colors outline different types of connectivities.

The second employed test field, Btest = BTD, is the model
of the magnetic field of an active region derived in Titov &
Démoulin (1999), given by a section of a current ring surrounded
by a stabilizing potential field. The employed configuration is the
same as in Valori et al. (2012), to which we refer the reader for
further details. In this case, the test field has an explicit current-
carrying component sustained by a flux rope. The analytical for-
mulae defining the test field are approximate, which together
with the rather coarse resolution employed here, yield relatively
large finite-divergence errors.

For both test fields BDD and BTD the discretized volume
is V = [−12, 12] × [−19, 19] × [0, 16], with uniform resolu-
tion Δ = 0.12 in all directions.

4.2. Numerical tests fields

The next test field that we consider, Btest = BMHD, is a snap-
shot of a magneto-hydrodynamic numerical simulation of mag-
netic reconnection in a null-point topology (Masson et al. 2012).
To use our present-stage diagnostic, we interpolated the orig-
inal snapshot onto a uniform and homogeneous grid, whereas
the original simulation was performed using a nonuniform one.
Because the divergence values are slightly increased by the in-
terpolation, they are not representative of the quality of the sim-
ulations presented in Masson et al. (2012). However, they still
serve our purpose of providing a typical situation arising from
the numerical evolution of magneto-hydrodynamic equations.
The considered volume is V = [−20, 0] × [−20, 10] × [0, 12]
with uniform resolution Δ = 0.05 in all directions, and the field
is normalized such that the vertical component is unity at its
maximum.

Next, we consider three NLFFF extrapolations of
Hinode/SOT vector magnetograms, obtained with the magneto-
frictional method in Valori et al. (2010). The original resolution
of the vector magnetograms is 0.3′′, and they can be prepro-
cessed (Fuhrmann et al. 2011) to improve their compatibility

with the force-free assumption on which the extrapolation code
is based.

Our fourth test field, Btest = BEx1, is the nonlinear extrap-
olation of a vector magnetogram of AR 11158, measured on
14 February 2011. The vector magnetogram was binned to the
resolution Δ = 1.1′′ prior to extrapolation, and no preprocess-
ing was applied in this case. The analyzed coronal model vol-
ume in arcsec is V = [−21, 68] × [−273,−171] × [0, 123].
The Hinode/SOT field of view of the measurements employed
for this extrapolation cuts through the external sunspots of a
quadrupolar field distribution, resulting in high field values at
the lateral edges of the magnetogram. Even computing the po-
tential field is problematic in this case, therefore we limited the
considered volume to the bipolar core of the extrapolated field.

The fifth test field, Btest = BEx2PP, is the extrapolated coronal
field model above AR 11024 on 4 July 2009. In this case, the full
resolution of Hinode/SOT is used, and the vector magnetogram
is preprocessed before extrapolation. The extrapolation covers a
volume of V = [−41, 42] × [−141,−16] × [0, 98] arcsec, with
uniform resolution Δ = 0.3′′. This model of the coronal field of
AR 11024 is discussed in detail in Valori et al. (2011), where
more details about extrapolation of vector magnetograms can be
found.

Finally, the sixth test field, Btest = BEx2, is the same case
as BEx2PP except that the vector magnetogram is not prepro-
cessed prior to extrapolation. More details on the numerical im-
plementation are given in Appendix A.

4.3. Cleaned test fields

Since a small divergence of B is one major condition for the
Thomson theorem, Eq. (2), for each test field Btest we consider
a corresponding solenoidal version of it, Btest,s, which is com-
puted from Btest employing the divergence cleaner described
in Appendix B. In Cartesian coordinates, such a solenoidal
field has the same x- and y-components as Btest, whereas the
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z-component is changed everywhere in the volume, except for
the top boundary. Therefore, Btest and Btest,s have the same dis-
tribution of normal field on all boundaries except for the bot-
tom one, where Btest,s differs from Btest by an amount that is
related to the combined effect of ∇ · Btest in the whole vol-
ume. Since the divergence cleaner changes the value of the nor-
mal field component on one boundary, the potential fields com-
puted from the boundary values of Btest and of the corresponding
solenoidal Btest,s are not the same. Additionally, the divergence
cleaner alters the current of the field, as prescribed by Eq. (B.5),
of an amount that is proportional to the divergence of Btest.
Therefore, the field that is obtained by applying the cleaner
may have drastically different properties than the original field.
Finally, let us notice that different solenoidal fields can be de-
rived from Btest using different methods. The divergence-cleaned
versions of the test fields Btest,s are used here as illustrative
examples.

5. Numerical tests of Thomson’s theorem

In this section we apply Eq. (9) to the test cases described in
Sect. 4. Table 1 summarizes the values of the divergence met-
ric 〈 | fi| 〉 defined in Appendix C and the contribution of each
term to Eq. (9), for all test fields. The divergence metric spans
values from 10−21 to 10−3. In all cases, the rightmost column,
corresponding to the sum of the righthand side of Eq. (9), is
equal to unity, despite the large difference in the divergence val-
ues. Therefore, we conclude that Eq. (9) completely accounts for
all relevant contributions to the energy, in all test cases. We then
consider the different contributions to Eq. (9) case by case.

5.1. Results with the test fields

The top part of Table 1 refers to the test fields Btest. In general,
the energies E of the different test fields go from the purely po-
tential case of BDD, where Ẽp,s = 1, to high-free-energy cases
(BTD and BEx1, with Ẽp,s � 0.8), where the field is strongly non-
potential. The main source of violation of Thomson’s theorem,
Eq. (2), in all cases is the mixed current-potential term Ẽmix, ex-
cept for the BEx2PP case where ẼJ,ns is slightly higher in absolute
value than Ẽmix.

More precisely, BDD is nearly perfectly potential, with non-
solenoidal spurious fluctuations contributing to the total en-
ergy for few parts per thousand at most (in Ẽmix). BTD has
a 16%-energy contribution from the current-carrying part of the
field ẼJ,s, with a 2% contribution from the nonsolenoidal field
related to the current-carrying structure (in Ẽmix but not in ẼJ,ns).
This is the effect of the approximate nature in the matching be-
tween current-carrying and external potential fields in the equi-
librium that defines the BTD field. BMHD, which has 6% free en-
ergy ẼJ,s, has an even lower nonsolenoidal contribution (−0.1%).
In all three cases, there is very small (BTD) or no significant
(BDD, BMHD) violation of Thomson’s theorem.

We now move to the NLFFF extrapolations. These show
values of 〈 | fi| 〉, which are two-to-three orders of magnitude
greater than in the first three cases. The contribution of the non-
solenoidal part of the potential field to the total energy, Ẽp,ns, is
always negligible with respect to the other terms. In the BEx2PP
case, the free energy associated with the solenoidal part of the
current-carrying field ẼJ,s is about 11%, and the potential field
energy is 88% of the total energy. The sum of the potential and
current-carrying solenoidal parts accounts for 99% of the to-
tal energy, apparently verifying Thomson’s theorem accurately.

However, ẼJ,ns is 14% and Ẽmix is −12%; i.e., the errors related
to the divergence of the current-carrying part of the field have
comparable magnitudes and compensate for each other. These
are the dominant sources of error, almost three orders of magni-
tude more than Ẽp,ns.

The test case with the highest value of 〈 | fi| 〉 is BEx1. With
respect to the BEx2PP case, BEx1 is characterized by three times
higher free energy ẼJ,s, twice the error on current ẼJ,ns, and al-
most a four times larger error on Ẽmix. Again, the last two are
largely compensating each other. We conclude that the interpo-
lation to one third of the resolution used for BEx1 is less efficient
than preprocessing (used for BEx2PP) in eliminating the source of
violation of Thomson’s theorem.

This situation is even more extreme in the case of the
extrapolation of the nonpreprocessed, noninterpolated magne-
togram BEx2. Although this case has a value of the mean diver-
gence 〈 | fi| 〉 that is only a factor two higher than for BEx2PP, and
not even the highest one, it shows the most pathological behav-
ior: The potential field has an energy 2.29 times the energy of the
test field, which is downright unphysical according to Eq. (2).
Such a high value is compensated for by an equally high value
of Ẽmix (−2.38). On the other hand, the current-carrying part of
the field ẼJ,s accounts for 14% of the energy, but the associated
error ẼJ,ns is more than six times larger. Such large errors are
related to the high values of the divergence – in particular at
the bottom boundary – and their actual values are very sensitive
to the numerical details of the computation. Additional analysis
of BEx2 and BEx2PP is discussed in Sect. 8.1.

We finally notice that in the preprocessed case BEx2PP, the
error from ẼJ,ns or Ẽmix might be considered as still tolerable if
compared with the total energy (errors on vector magnetograms
are similar, after all), but it seriously compromises the reliabil-
ity of the free energy estimation, each one being as high as ẼJ,s
itself.

5.2. Results with the cleaned test fields

We now consider the bottom part of Table 1 for the solenoidal
fields. The values of the divergence are drastically reduced in
all cases to 10−17 or less, which shows that the cleaner in
Appendix B is an effective – and fast – way of removing the
nonsolenoidal component of a discretized magnetic field. For the
purpose of this article, we can then consider all Btest,s to numer-
ically be perfectly solenoidal. All error terms, i.e., Ẽp,ns, ẼJ,ns,
and Ẽmix, are smaller than 1%, and we recover Eq. (2) in a nu-
merical sense.

More precisely, the BDD,s and BMHD,s cases are practically
identical to their corresponding test fields, as far as the energy
metrics E, Ẽp,s, and ẼJ,s are concerned. On the other hand, BTD,s
shows an increase of about 1.3% of the total energy, E, as a re-
sult of the removal of the error in Ẽmix of BTD. The error re-
moval affects the potential field energy Ep more, which raises
about 5% with respect to the energy of the potential field in BTD
(in non-normalized values), as a consequence of the cleaner’s
modification of the bottom boundary. In contrast, the relative
contribution of the current-carrying part ẼJ,s is unaffected by
the cleaner. It is true that 〈 | fi| 〉 differs by 15 orders of magni-
tude between BTD and BTD,s, but it is significant anyway that
the removal of a 2%-error in Ẽmix changes the non-normalized
values of the total energy E and potential field energy Ep,s
of 1% and 5%, respectively. We conclude that, even in relatively
divergence-free fields, residual nonsolenoidal effects can be en-
ergetically significant.
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Table 2. Contributions to Ẽmix in Eqs. (8), (9).

Btest Ẽp,s/p,ns ẼJ,s/J,ns Ẽp,s/J,ns ẼJ,s/p,ns Ẽp,ns/J,ns Ẽp,s/J,s Ẽmix

BDD –0.01 0.00 0.00 –0.00 –0.00 0.00 –0.00
BTD –0.01 0.00 0.03 0.00 –0.00 –0.00 0.02
BMHD –0.00 0.00 –0.00 –0.00 –0.00 –0.00 –0.00
BEx1 –0.01 –0.08 –0.43 0.00 0.00 0.05 –0.46
BEx2PP 0.00 –0.03 –0.10 0.00 0.00 0.01 –0.12
BEx2 0.00 –0.28 –2.46 0.00 –0.00 0.36 –2.38

Notes. Ẽp,s/p,ns =
1
E

∫
V Bp,s · ∇ζ dV, ẼJ,s/J,ns =

1
E

∫
V BJ,s · ∇ψ dV,

Ẽp,s/J,ns =
1
E

∫
V Bp,s · ∇ψ dV, ẼJ,s/p,ns =

1
E

∫
V BJ,s · ∇ζ dV, Ẽp,ns/J,ns =

1
E

∫
V ∇ζ ·∇ψ dV, Ẽp,s/J,s =

1
E

∫
V Bp,s ·BJ,s dV, Ẽmix = Ẽp,s/p,ns+ ẼJ,s/J,ns+

Ẽp,s/J,ns + ẼJ,s/p,ns + Ẽp,ns/J,ns + Ẽp,s/J,s .

In the extrapolated cases, the removal of the larger diver-
gence has far stronger consequences. In the first place, the non-
normalized field energy E of the cleaned fields BEx1,s, BEx2PP,s,
and BEx2,s is increased of 42%, 109%, and 38%, respectively,
with respect to those of the corresponding test fields. As a con-
sequence of the higher values of E, the importance of potential
fields relative to the total energy Ẽp,s is decreased (to 78%, 95%,
and 40% of their test-field values, respectively). In contrast, the
energy contribution related to the current-carrying part of the
field ẼJ,s is strongly increased, as expected, since the cleaner in-
troduces currents that are related to the cumulated divergence
that is removed (see Appendix B).

We conclude that the cleaned fields that are obtained from
the test ones using the method in Appendix B all comply
with Thomson’s theorem accurately. However, three of them,
namely BEx1,s, BEx2PP,s, and BEx2,s, are energetically very differ-
ent from the original fields BEx1, BEx2PP, and BEx2, respectively.
Incidentally, we notice that the removal of the finite divergence
does not conserve the approximate force-freeness of the extrap-
olated fields.

5.3. Contributions to Ẽmix for the test fields

In many of the test fields in Table 1, Ẽmix is the largest source
of error. Table 2 shows the six contributions to Ẽmix in the order
in which they appear in Eq. (8) and their sum Ẽmix for the six
test cases Btest. We do not consider the solenoidal fields Btest,s
since all terms are mostly zero and never bigger than 0.7% The
following conclusions can be drawn. First, the main contribution
to Ẽmix is Ẽp,s/J,ns ≡ 1

E

∫
V Bp,s · ∇ψ dV in all cases. The main

source of violation of Thomson’s theorem is then the divergence
of the current-carrying part of the field. More often than not, this
term has a similar magnitude and opposite sign of ẼJ,ns, which is
positive-definite. However, there is no obvious reason for Ẽp,s/J,ns
to be always – or predominantly – negative, and we regard this
as a coincidence.

Second, the terms with residual divergence of the potential
field (i.e., any term containing ∇ζ in Eq. (8)) are always neg-
ligible. Therefore, also in view of the always low Ẽp,ns values
in Table 1, we can conclude that the divergence of the potential
field always gives a negligible contribution to the energy.

Third, the integral ẼJ,s/J,ns =
1
E

∫
V BJ,s · ∇ψ dV, and the in-

tegral Ẽp,s/J,s =
1
E

∫
V Bp,s · BJ,s dV have finite values for the ex-

trapolations in Table 2. Analytically, they should be vanishing.
Using the divergence theorem, Eq. (4), the surface integral van-
ishes because BJ,s|∂V = 0, and the volume integral vanishes be-
cause∇ ·BJ,s = 0. The first condition is enforced at the boundary,

Table 3. Values of log10(〈 | fi| 〉), for the fields decomposition in Eqs. (3),
(5), and (6) (see Eq. (C.2) for the definition of 〈 | fi| 〉).

Btest B Bp Bp,s Bp,ns BJ BJ,s BJ,ns

BDD –5.61 –4.98 –5.60 –2.43 –2.35 –2.93 –2.46
BTD –5.54 –4.84 –5.40 –2.29 –4.22 –4.71 –3.20
BMHD –4.78 –5.76 –6.23 –2.55 –3.96 –4.54 –2.45
BEx1 –2.40 –2.60 –2.66 –1.42 –2.08 –2.36 –2.04
BEx2PP –3.05 –4.02 –4.09 –2.28 –2.62 –2.90 –2.62
BEx2 –2.66 –3.87 –3.96 –2.12 –2.69 –2.86 –2.80
Btest,s

BDD,s –18.0 –4.98 –5.60 –2.44 –0.83 –2.62 –1.91
BTD,s –20.4 –4.84 –5.40 –2.31 –3.41 –4.09 –2.15
BMHD,s –20.5 –5.42 –5.79 –2.39 –4.39 –4.70 –2.31
BEx1,s –17.2 –2.65 –2.71 –1.47 –1.72 –2.11 –1.83
BEx2PP,s –16.8 –3.78 –3.93 –2.26 –0.44 –2.76 –2.25
BEx2,s –17.1 –3.63 –3.79 –1.99 –1.51 –2.71 –2.19

Notes. Column B here is the logarithm of the column 〈 | fi(B)| 〉 in
Table 1. More negative values correspond to more solenoidal fields.

but the second is only approximately true numerically (see also
Sect. 6.1). This is not enough to insure that ẼJ,s/J,ns and Ẽp,s/J,s
vanish numerically. This is why we adopted the decomposition
of the energy of Sect. 3.3 that only contains volume integrals.

6. Source of errors in the decomposition

6.1. Values of 〈 |fi | 〉 for the field decomposition in Eqs. (3)–(6)

In this section we quantify how accurate the decomposition in
solenoidal and nonsolenoidal contributions is. Table 3 reports
the values of the logarithm of 〈 | fi| 〉, defined by Eq. (C.2), for the
field decomposition used in Eq. (7). Since 〈 | fi| 〉 is not additive
in the field, its value for, say, B is different from the sum of its
values for the potential Bp and current-carrying BJ components.

We next consider the decomposition of the potential field
given by Eq. (5) for the test fields Btest (upper half of Table 3).
Values of 〈 | fi| 〉 for the solenoidal part of the potential field Bp,s
are better (i.e., more negative) than those for Bp,ns, so that
the Bp,s is indeed more solenoidal than Bp,ns. However, it is only
in the first three cases, BDD, BTD, and BMHD, that log10(〈 | fi| 〉)
has a noticeably more negative value for Bp,s than for Bp. In the
other cases, the values are relatively close to each other, and Bp,s
is only marginally more solenoidal than Bp. On the other hand,
Bp,ns is always much less solenoidal than Bp. This is partly the
effect of the nonadditivity of the metric 〈 | fi| 〉, and partly be-
cause Bp,ns is, on average, much smaller than Bp,s, as the cor-
responding energy metrics in Table 1 show. (In particular, Ẽp,ns,
i.e., the energy associated with Bp,ns, is always extremely small.)

Similar conclusions can be drawn looking at the decompo-
sition of the current-carrying part, BJ, where this time the en-
ergy associated with the solenoidal error (see ẼJ,ns in Table 1) is
more significant. In this case, values of 〈 | fi| 〉 for all three contri-
butions BJ, BJ,s, and BJ,ns are of similar magnitude. Again, the
nonsolenoidal part, BJ,ns, has a higher divergence value than the
solenoidal one, BJ,s, but only marginally so for BDD and extrap-
olated fields.

We consider the solenoidal test fields Btest,s (bottom half of
Table 3). Values of 〈 | fi| 〉 for a given field component belonging
to Btest and to the corresponding Btest,s are very similar. For in-
stance, the value of log10(〈 | fi| 〉) for BJ,s in, say, the test field BEx1
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Table 4. Removal of flux imbalance.

Btest 〈 | fi(Bbal
test)| 〉 Φ∂V(Btest) Φ∂V(Bbal

test) ẼΦ ẼΦ,mix

BDD –5.61 –6.83 –26.4 –17.3 –11.2
BTD –5.54 –7.79 –26.0 –19.1 –11.8
BMHD –4.78 –4.36 –22.8 –12.2 –6.29
BEx1 –2.40 –1.33 –18.7 –5.18 –3.30
BEx2PP –2.60 –2.00 –20.9 –7.49 –4.52
BEx2 –2.63 –1.86 –20.0 –6.77 –4.35

Notes. For all quantities, the log10 of the absolute value is shown. 〈 | fi| 〉
is the divergence metric defined in Eq. (C.2); Φ∂V is the normalized
magnetic flux through all boundaries, Eq. (12); ẼΦ and ẼΦ,mix are nor-
malized to the energy E of Bbal

test, which is the flux balanced field associ-
ated to Btest, see Eq. (13).

is −2.36, whereas for the corresponding contribution for BEx1,s
it is −2.11. Therefore, the above discussion of the contributions
to Btest holds for those of Btest,s as well. In contrast, the total di-
vergence of the field is very different in the two cases, i.e., −2.4
and −17.2, respectively. This is a clear indication that the accu-
racy of the field decomposition is determined by the accuracy in
the solution of Eqs. (3)–(6) rather than by the divergence of the
total field.

In conclusion, the Poisson solver provides a decomposition
of the magnetic field where the solenoidal parts have a smaller
divergence than the original field, as required. The limit in the
accuracy of the decomposition comes from the accuracy of the
solver, and not from the level of solenoidality of the initial field.
One possible source of inaccuracy for the solver is the incom-
patibility of the boundary conditions used in Eqs. (3)–(6), which
is discussed in the next section.

6.2. Compatibility of boundary conditions in Eqs. (3)–(6)

We here consider the normalized flux of the field, Φ∂V, com-
puted as the surface flux through all six boundaries, normalized
to the mean flux entering and exiting from the lower boundary:

Φ∂V(B) =
∫
∂V

B · dS /Φnorm, (12)

with Φnorm =
1
2

∫
z=z1

|B · dS|.

The values of log10 |Φ∂V(Btest)| in Table 4 show that the test
fields of the extrapolation cases BEx1, BEx2PP, and BEx2 are not
flux-balanced. Therefore, the decomposition of Eq. (7) based on
the solutions of Eqs. (3)–(6) may be inconsistent (see Eq. (11)
and related text). The purpose here is to determine whether
the unbalanced flux affects the accuracy of any of the terms in
Eq. (7).

A flux-balanced field, Bbal
test, can be computed from a flux-

unbalanced one, Btest, by splitting the original field as

Bbal
test = Btest + BΦ, (13)

and assuming BΦ = ∇Θ to be generated by an uniformly dis-
tributed, constant divergence; i.e., ΔΘ = constant. We choose
the simple solution Θ ∝ r2, and fix the constant such that the
flux of BΦ equals the flux of Btest, yielding

BΦ =
(

1
3V

∫
∂V

Btest · dS
)

r.

Table 4 shows that the above modifications to Btest is effective,
drastically reducing the net flux of the original field to very
low values (compare log10 |Φ∂V(Btest)| with log10 |Φ∂V(Bbal

test)|).
On the other hand, the effect on the field of BΦ is very small.
Both energy terms related to that (i.e., ẼΦ ≡ 1

2E

∫
V B2

Φ
dV

and ẼΦ,mix ≡ 1
E

∫
V Btest · BΦdV) are negligible (with a contri-

bution below 0.01% of the total energy E computed for Bbal
test).

Repeating the same analysis of Sects. 5 and 6.1 for the flux-
balanced part of the field only, Bbal

test, yields no significant change:
all values in Tables 1–3 are identical. Inaccuracies of the Poisson
solver in solving Eq. (3) are therefore related to the solver itself,
not to the incompatibility of the boundary conditions.

In a similar way, the test field can be modified to have vanish-
ing volume divergence, which is the requirement for consistency
in solving Eqs. (5), (6), using

BΦ =
(

1
3V

∫
V
∇ · BtestdV

)
r.

The result is likewise clear: no significant change is found in the
values of Tables 1–3.

Therefore, an imperfect consistency of source and bound-
ary conditions play no role in the accuracy of the solution of
the Laplace and Poisson equations employed in the decompo-
sition, Eq. (7), for any of the test cases. Recalling the results
of Sect. 6.1, we conclude that the accuracy limitation of our
analysis comes from the solver itself. In this respect, we note
that, when the method used in Eqs. (5) and (6) is viewed as
an algorithm for removing the divergence (Projection method),
it is far less efficient than our divergence cleaner described in
Appendix B. On the other hand, the projection method has other
advantages; for instance, it change neither the current in the
volume nor the normal component of the original field at the
boundaries.

7. Parametric study

In this section we study how the relative energy of the field de-
pends on its divergence in progressively going from a solenoidal
to nonsolenoidal realizations. The purpose is to offer a practi-
cal method of fixing the level of solenoidal errors that can be
tolerated in a given numerical realization, based on their conse-
quences on the energy of the field.

7.1. Parametric models of finite-divergence fields

For a given test magnetic field Btest, the corresponding
solenoidal field Btest,s is considered. A parametric, nonsolenoidal
field Bδ is obtained by adding a nonsolenoidal component Bdiv
to Btest,s, using a control parameter δ, as

Bδ = Btest,s + δ Bdiv. (14)

We consider here two models of Bdiv, namely

Bdiv =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− ẑ
∫ z2

z
(∇ · Btest)dz′ Model 1,

− 1
3

(
x̂
∫ x2

x
dx′ + ŷ

∫ y2

y
dy′+

+ ẑ
∫ z2

z
dz′

)
∇ · Btest Model 2.

(15)

Adding the first divergence model for δ = 1 is the inverse op-
eration of the cleaner in Sect. B, since Bδ(δ = 1) = Btest.
For other δ values, the resulting field Bδ only differs from the
solenoidal field Btest,s in the z-component. The second model for
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a) BDD b) BTD c) BMHD

d) BEx1 e) BEx2PP f) BEx2

Fig. 2. Magnetic energy, Eq. (16), normalized to the energy of the potential field having the same distribution of normal field on the boundaries
(black lines) or to the energy of the reference field (orange lines), as a function of the amplitude δ of the nonsolenoidal term, Eq. (14). Two models
for the divergence are shown according to Eq. (15). Each panel shows the results of a test field: a) the potential field of a double dipole, BDD;
b) the TD model, BTD; c) the MHD model, BMHD; d) the NLFFF model of the nonpreprocessed magnetogram of AR 11158, BEx1; e) the NLFFF
model of the preprocessed magnetogram of AR 11024, BEx2PP; f) the NLFFF model of the nonpreprocessed magnetogram of AR 11024, BEx2. An
important change of scale of both axes is present between the top and the bottom rows.

the divergence is more general, because it changes all three com-
ponents of Btest,s in the volume, although not on all boundaries.

Both divergence models in Eq. (15) are based on the com-
puted ∇ · Btest. In this way, we relate the divergence models to
the source of error that is specific to the considered test field.
For instance, we expect that errors in the test case BDD, which
are only generated by truncation errors, have a different distri-
bution in space than those coming from the approximate nature
of the BTD equilibrium, or from a numerically constructed field
like BEx2PP.

The influence of a finite divergence of Bδ on the energy value
can be written as

E = δ2Ediv + 2δEs,div + Etest,s, (16)

where E, Ediv, and Etest,s are defined as usual as proportional
to the volume integrals of B2

δ, B2
div, and B2

test,s, respectively,
and Es,div ≡

∫
V(Btest,s · Bdiv) dV/8π.

Below, the energy dependence on δ is studied for the test
fields described in Sect. 4. Since the separation in solenoidal and
nonsolenoidal components is known by construction, we sim-
plify the presentation by analyzing the energies of the total fields
according to Eq. (16), and we do not separate the error sources as
in Sect. 5. For each value of δ, we consider Bδ as the test field to
analyze and compute the corresponding potential field according
to Eq. (3).

7.2. Parametric dependence of the energy

Figure 2 shows the energy for the two divergence models in
Eq. (15), as a function of the control parameter δ in a wide
range of values. Due to the large difference in ∇ · Btest be-
tween the six models, the top- and bottom-rows have different
scales. The orange lines show the energy normalized with the
energy of Btest, which is not dependent on δ: They follow the
expected parabolic profile of Eq. (16), only scaled by the nor-
malization factor. Model 1 (continuous orange lines) yields a
smaller variation of the energy with δ (corresponding to lower
values of Ediv) with respect to Model 2 (dashed orange lines),
and is centered farther away from δ = 0 (i.e., Model 1 has higher
values of Es,div/Ediv).

The orange curves in the top row of Fig. 2 show that it takes
very high values of δ in order to have a variation of order one
of the energy in the BDD, BTD, and BMHD cases (e.g., for the
Model 2 applied to BTD at δ = 15). On the other hand, the energy
of the extrapolated fields shows a much steeper increase with δ,
related to the much higher value of ∇ · Btest, and particularly so
for Model 2.

The location of the minimum of each of the orange curves is
at δmin = −Emix/Ediv, therefore its location depends on the aver-
age orientation and amplitude of the divergence field Bdiv with
respect to the solenoidal field Bs. The orientation and amplitude
of Bdiv also determines the height of the minimum (since the
energy of the test field is fixed). With both divergence models,
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a) BDD b) BTD c) BMHD

d) BEx1 e) BEx2PP f) BEx2

Fig. 3. Magnetic energy, Eq. (16), normalized to the energy of the corresponding potential field (black lines, zoom of Fig. 2), and energy associated
to the nonsolenoidal part of BJ, normalized to the energy of Btest (red lines, equal to EJ,ns/E in the notation of Eq. (8)), as a function of the
amplitude δ of the nonsolenoidal term, Eq. (14). Two models for the divergence are shown according to Eq. (15). Each panel shows the results
of a test field: a) the potential field of a double dipole, BDD; b) the TD model, BTD; c) the MHD model, BMHD; d) the NLFFF model of the
nonpreprocessed magnetogram of AR 11158, BEx1; e) the NLFFF model of the preprocessed magnetogram of AR 11024, BEx2PP; f) the NLFFF
model of the nonpreprocessed magnetogram of AR 11024, BEx2. The black dash-dotted line at E/Ep = 1 marks the value below which the solution
is unphysical. A large change of scale of both axes is present between the top and the bottom rows.

there are no general rules; i.e., the energy can increase or de-
crease with δ, and the location of the minimum depends on the
case.

7.3. Comparison with the potential field energy

The physically meaningful quantity is represented by the energy
normalized to the energy of the corresponding potential field,
represented in Fig. 2 by black lines. For different δ values, the
normal component of the field Bdiv at the boundary changes ac-
cording to Eq. (15), hence also the energy of corresponding po-
tential field depends – quadratically – on δ. Due to the addi-
tional δ-dependence, the shape of the black lines is not always
parabolic in the six cases, and the actual profiles depend on the
details of the spatial distribution of divergence in the test field.

To show that, we first notice that the two divergence models
behave very differently, except for BDD where the range in δ is
too narrow to show significant differences. For instance, E/Ep of
Model 1 (continuous black lines) is an increasing function of δ
in the range (−15, 15) in the BTD case. Model 2, on the other
hand, has a parabolic energy profile with minimum at δ ≈ −4.
For both models, the energy variation is relatively large (1.8 and
above 2 for Models 1 and 2, respectively), whereas the variation
in the same range of δ is smaller for the BDD and BMHD cases.

The extrapolated cases yield not only much larger variations
(note again the difference in scales between the top and bottom
rows of Fig. 2), but also a stronger dependence on δ. In par-
ticular, Model 2 yields a relative energy that sharply increases

with δ, for instance, to one order of magnitude increase for δ go-
ing from the value 0 to 1 in the BEx2PP case. A saturation at high
values of δ is clearly visible in the dashed black line (Model 2) of
the BEx1 case, and is hinted at in the BEx2PP case. Such saturation
is actually present in all three extrapolated cases, yielding values
that are higher than those shown in the corresponding plots. The
saturation happens when the quadratic dependence on δ of the
energy of potential field compensates the quadratic term δ2Ediv.

On the other hand, Model 1 shows a more complex depen-
dence on δ, which is shown in magnified scale by the black lines
in Fig. 3. Counterintuitively, the largest variation in the relative
energy E/Ep as a function of δ is found for BEx2PP, i.e., for the
extrapolation case, which satisfies Thomson’s theorem better,
see Table 1. The continuous black lines in Fig. 3d,f show the
presence of one maximum and one minimum in the considered
range of values of δ (for the BEx2PP case, these lie outside the
considered range), implying that, at high values, the potential
field energy grows faster than the total energy. The location of
the extrema is different in the three BEx1, BEx2PP, and BEx2 cases,
and in none of the cases are the extrema found for the solenoidal
(δ = 0) or the test (δ = 1) configurations. In general, the maxi-
mum and minimum energy configurations depend on the spatial
distribution of the divergence of the test field, through Es,div.

7.4. Unphysical cases.

The black dash-dotted line at E/Ep = 1 in Fig. 3 is the value
below which unphysical fields are obtained. We find that only
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Fig. 4. Power spectra of the two-dimensional
fields Bx (continuous line) and Bz (dashed
line), summed over all wave numbers ky, for
the three cases BTD (orange), BEx2PP (red),
and BEx2 (black). Left: at the bottom bound-
ary. Right: at the tenth pixel in height. Spectra
are normalized to their maximum value, and
the spatial resolution is taken to be 1 in both
directions (i.e., the wave number kx has the
dimension of pixel−1 and is normalized to the
total number of modes).

Model 1 can produce unphysical solutions, and only for spe-
cific range of δ values in the BDD, BTD, BEx2 cases. The latter
case is known from the value of Ep/E in Table 1, and is consid-
ered to be an extreme case because of the large divergence that
it involves. However, the possibility of also creating unphysical
solutions in the far more solenoidal field BDD and BTD (for val-
ues of |δ| > 5) is unexpected. It confirms that not just the value
of the divergence is important, but also its detailed spatial dis-
tribution with respect to the solenoidal component, as evident
from Es,div. It is the alignment between Bdiv and Bs, and not just
the magnitude of Bdiv, which determines how strongly the en-
ergy depends on δ. Moreover, while E > Ep is always satisfied
for BEx1 and BEx2PP, the minimum value of E is close to Ep (see
Fig. 3d,e), showing that unphysical fields may be found rela-
tively easily in NLFFF extrapolations.

From Table 2 and the related discussion of Sect. 5.3 we
showed that the main source of violation of Thomson’s theo-
rem is the term Ep,s/J,ns in Emix. The dependence on δ of this
term, normalized to the energy of the test field, is shown by the
red curves in Fig. 3 for both models of divergence (Eq. (15)).
The contribution to the total energy is negligible in the BDD
and BMHD cases, and can be a few percent for large δ in
the BTD case.

In the extrapolated cases, the dependence of Ep,s/J,ns on δ is
linear for Model 1 and parabolic for Model 2. In Model 1, the
steepness of the linear curve increases, going to BEx2PP to BEx1
and BEx2, as expected (see Table 1 and related text). The am-
plitude of the error is two to three orders of magnitude larger
than in the BDD, BTD, and BMHD cases. In the BEx2PP case the
error is smaller, but it is still about a factor 20 larger than in BTD
for δ = 5.

If we consider the black curves in Fig. 3 for δ = 0, we can
identify the energy of the solenoidal field as a natural reference
value for the free energy. Starting from this reference value, for
increasing |δ|, the linear contribution of Ep,s/J,ns, together with the
quadratic change in the potential field energy, creates the maxi-
mum and minimum values of E/Ep. If the linear contribution is
large enough, the minimum lies below the threshold E/Ep = 1,
and there is a range of values where the solution is unphysical.
For even higher values of |δ|, the quadratic dependence of the po-
tential field energy dominates E. From this point onward, Ep,s/J,ns
is not the main source of error in Eq. (7).

More generally, a parametric study like the one in Figs. 2
and 3 can be used to identify what is the level of divergence (i.e.,
the level of Emixor Ep,s/J,ns) that can be tolerated and which is the
threshold above which the solution becomes entirely unphysical
(i.e., with E/Ep < 1).

In conclusion, the parametric study shows that the energy
may be severely influenced by the solenoidal property of the
field. The effect depends not only on the amplitude of the
nonsolenoidal component, but also on the specific average ori-
entation of the nonsolenoidal component with respect to the
solenoidal one (directly affecting Es,div in Eq. (16)). As a re-
sult, a single-number divergence metric, such as 〈 | fi| 〉, is insuf-
ficient to deduce what errors should be expected in the energy.
A more proper indication is found by the numerical verification
of Thomson’s theorem (Sect. 5) and by a parametric study as
presented in this section.

8. Source of divergence in NLFFF extrapolations

We now investigate in more detail some of the test fields dis-
cussed in Sect. 5, with emphasis on the reason for the large di-
vergence that leads to violating Thomson’s theorem. The main
source of error comes, in almost all the cases, from the mixed
term Emix, and is associated with the nonsolenoidal component
of the current-carrying part of the field. Also, there are markedly
larger errors in the extrapolated test fields, BEx1, BEx2PP, BEx2,
than in BDD, BTD, and BMHD. Finally, the preprocessing of the
vector magnetogram before extrapolation yields more solenoidal
fields, whereas a simple averaging does not seem to be enough
for removing errors, and yields a more severe violation of
Thomson’s theorem (Eq. (2)).

8.1. Analysis of small scales

One main difference among the Btest cases in the upper half
of Table 1 is the length scale of the magnetic field: While the
first three cases are smooth fields with a magnetic field variation
spanning several times the spatial resolution, the extrapolated
cases have large variations on the pixel scale, especially at the
bottom boundary, i.e., on the vector magnetogram that is used as
a boundary condition for extrapolations. This is true to a differ-
ent degree for the three cases: For BEx1 the vector magnetogram
was interpolated (with a flux-conserving average) at a resolution
of about one third that of BEx2 and BEx2PP. Such an interpolation
smooths part of the small scale away, yielding results that are
closer to the BEx2PP case rather than to the BEx2 one. BEx2PP is not
interpolated, but it is preprocessed, an operation that includes an
explicit smoothing of smaller scales, especially on the transverse
components. Finally, BEx2 has neither interpolation nor prepro-
cessing, and it retains all the small scales that are present at the
full resolution of the Hinode/SOT vector magnetograms.

As an example, Fig. 4 shows the power spectrum of the x-
and z-components of the fields BTD, BEx2PP, and BEx2, at two
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different heights as a function of the normalized wave number kx.
The lefthand panel of the figure shows that, at the bottom bound-
ary, BTD has power spectra that decrease rapidly with kx, in both
components. In contrast, the power spectra of BEx2PP and BEx2
have higher values on all scales, which are particularly strong in
the vertical component.

Ten pixels above the bottom boundary (right panel in Fig. 4),
the BTD power spectrum is essentially the same as at z = 0 be-
cause both planes cut through the flux rope, so a similar magnetic
structure is present. In contrast, BEx2PP on the upper plane has a
much more peaked spectrum, except for the distribution tail on
the smallest scales which is basically as strong as at the bot-
tom boundary. Such a component on the shortest scales comes
from the force-free condition that is enforced by the extrapola-
tion code, which propagates into the volume the small scales that
are present at the bottom boundary.

We now consider the difference between preprocessed
case BEx2PP and the non-preprocessed one BEx2. The difference
in 〈 | fi| 〉 between the two is about a factor 2, and it is large in
the other energy metrics in Table 1. The comparison between
the normalized spectra of BEx2PP and BEx2 in Fig. 4 shows that
there are comparable (relative) energies on small scales in both
cases. Actually, by locally changing the magnetic field at the
bottom boundary to enforce force-free compatibility, prepro-
cessing increases the small scales. The smoothing term that is
present in preprocessing only has a limiting effect on such an
increase. Therefore, the two cases BEx2PP and BEx2 do not dif-
fer strongly as far as the presence of small scales is concerned,
while Thomson’s theorem is much better satisfied for BEx2PP
than for BEx2 (see Sect. 5.1).

The cleaned test fields Btest,s are numerically solenoidal, and
there is no violation of Thomson’s theorem. However, in these
cases, too, small scales are increased (not shown), since the di-
vergence cleaner introduces extra electric currents that are re-
lated to derivatives of the divergence of the original field, see
Eq. (B.5). This is an additional confirmation that the presence of
small scales as such is not directly at the origin of the violation
of Thomson’s theorem.

8.2. Role of small scales and preprocessing

Valori et al. (2010) show that the NLFFF extrapolation of
the BTD vector magnetogram yields a very accurate reconstruc-
tion of the whole test field, which is also solenoidal to a very
high degree. On the other hand, there is a large difference in the
scale distribution between smooth fields like the BTD and the
extrapolated fields.

The presence of small scales inside the volume, which are
induced by the small scales at the boundary, may not be cor-
rectly approximated by the discretization employed in extrapo-
lation code, yielding local violation of the solenoidal constrain.
However, when the extrapolation from a preprocessed magne-
togram is considered, the extent of the violation of Thomson’s
theorem is greatly reduced, even though small scales are actu-
ally increased. By partially enforcing force-free compatibility
on the bottom boundary, the preprocessing provides the extrap-
olation code with a boundary condition that is more compati-
ble with the force-free equations. Since extrapolation codes at-
tempt to construct a solution of the force-free equations that is
simultaneously force- and divergence-free, the more compatible
the boundary, the more consistent (i.e., force- and divergence-
free) the obtained solution. Conversely, when the boundary con-
dition is incompatible with the force-free equation, the reduc-
tion of the Lorentz forces is at the expense of the solenoidal

condition. In such cases, the divergence of the solution is higher,
and Thomson’s theorem is more severely violated. We thus con-
clude that the incompatibility of the boundary condition with
the force-free condition is at the origin of the difference in the
errors EJ,ns and Emix between BEx2PP and BEx2.

We notice that preprocessing is a parametric method that can
produce progressively more force-free-compatible vector mag-
netograms for higher values of the employed parameters, at the
price of larger modifications of observed values. The energy val-
ues and their relative errors therefore vary continuously as a
function of the preprocessing parameters, quite independently
of the particular extrapolation method that is employed (see,
e.g., Schrijver et al. 2008; Metcalf et al. 2008). No unequivocal
method is available in order for determining the best parameters
to use (see, e.g., Wiegelmann et al. 2006, 2012; Fuhrmann et al.
2011), which leaves energy estimations subjected to uncomfort-
able arbitrariness.

9. Conclusions

Thomson’s theorem states that the energy of a magnetic field is
given by the sum of the energy of the current-carrying part of
the field plus the energy of the potential field that has the same
distribution of the normal component on the boundary of the
considered volume. The field must be perfectly solenoidal for
the theorem to be valid. Such a condition is often only approxi-
mately satisfied in numerical simulations, such as in MHD sim-
ulations and NLFFF extrapolations. However, it is a non-trivial
task to identify a quantitative estimation of solenoidal errors that
can be applied to different discretizations of magnetic fields, es-
sentially due to the non-local consequences that such errors pro-
duce. Our goal has been to develop physically meaningful met-
rics and practical methods that can be used to judge whether the
solenoidal property is fulfilled with sufficient accuracy.

To this aim, we introduced a decomposition of the energy
of a discretized field into solenoidal and nonsolenoidal contribu-
tions that allowed an unambiguous and numerically well-defined
estimation of the effect of the divergence in terms of associ-
ated energies. Moreover, we introduced a method of parametriz-
ing the divergence that allows for an exploration of the non-
solenoidal effects.

In this way, the numerical verification of Thomson’s theorem
offers an operational and quantitative way of checking the reli-
ability of energy estimations in numerical computations. Since
the violation of Thomson’s theorem is solely determined by the
presence of magnetic charges, it is at the same time a quantitative
estimation of the importance of solenoidal errors.

We applied our method to six different test cases, covering
a representative sample of numerical realizations. Of the six
test cases considered here, two of them (the dipolar field BDD
and a snapshot of an MHD simulation of null-point reconnec-
tion BMHD) presented negligible violations, and one (a force-free
current ring BTD) offered only a moderate one that, however, has
finite effects on the energy. In the case of an NLFFF extrapo-
lation of a preprocessed vector magnetogram (BEx2PP), the sum
of the potential energy Ep and free energy EJ,s is very close to
the total energy E, and one could draw the conclusion that al-
most no violation of Thomson’s theorem occurs. However, by
separating all contributions in Eq. (7), our analysis showed com-
pensating energy contributions (EJ,ns and Emix) that are close
to EJ,s. If the most conservative view is adopted by consider-
ing errors in absolute values, then the opposite conclusion must
be drawn: The violation is large enough to compromise the es-
timation of the free energy, since both EJ,ns and Emix are on the
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order of the free energy value EJ,s. The last two cases we stud-
ied, also NLFFF extrapolations but of nonpreprocessed magne-
tograms (BEx1 and BEx2), represent cases with very large errors.

The energy of the potential field Ep,s is the reference value
for the free energy. In our applications, the inaccuracy in its de-
termination, Ep,ns, is practically never significant. The current-
carrying part of the field is responsible for the largest errors
instead.

The parametric study shows that the amplitude of the non-
solenoidal component is not the only factor that generates errors
in the energy. The average orientation of the nonsolenoidal com-
ponent with respect to the solenoidal one (affecting directly Es,div
in Eq. (16)) plays an even more important role. Indeed, even us-
ing a relatively solenoidal discretized magnetic field (like BTD),
it is possible to create configurations where the energy of the
field is lower than that of the corresponding potential field. Such
unphysical solutions have also been found in some cases of
NLFFF extrapolations.

More generally, in NLFFF extrapolations the energy of the
reconstructed field was found to vary according to the extent of
the modification that was enforced on the vector magnetogram
that is used as boundary condition (by preprocessing, i.e., by
smoothing and/or by enforcing force-freeness compatibility).
Our study shows quantitatively the effect of such practices on
the energy, and makes it clear that the origin of the variability
(and errors) in energy estimations based on NLFFF extrapola-
tions is the presence of a large divergence, which is eventually
caused by the lack of compatibility between the equations solved
(solenoidal force-free field) and the photospheric boundary con-
ditions, rather than by noise or the small scales present in the
vector magnetogram.

Finally, the parametric study is based on a numerically
solenoidal field that is obtained from a given, nonsolenoidal
one. We introduced a method for the complete removal of the
nonsolenoidal component of a discretized field. At the price of
changing boundary values and the current density, this method
provides a field that is solenoidal to numerical precision. When
the solenoidal versions of the test fields are considered, the
Thomson theorem is found to be fulfilled with more than 99%
accuracy.

We concluded that testing Thomson’s theorem in numerical
realizations of magnetic fields is a powerful method quantifying
the amount of nonsolenoidal contributions to a numerical mag-
netic field. In particular, it allows assessing the reliability of free
magnetic energy estimations, a crucial quantity in phenomena
such as flares and coronal mass ejections. To this purpose, we
proposed a set of analytical and numerical tools that allowed us
to fully test the reliability of numerical magnetic fields. Such a
set includes a method for removing the divergence from a given
discretized field, to numerical precision. The effect of larger
and larger divergence contributions is studied by parametrically
adding a known divergence to the numerically solenoidal field.
In this way, it is possible to monitor the effect of the non-
solenoidal part of the magnetic field and to quantify its effect in
terms of magnetic energy. Our method can be applied to any dis-
cretization of magnetic fields, e.g., in MHD simulations and in

NLFFF extrapolations, to constrain quantitatively errors due to
violation of the solenoidal property.
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Appendix A: Details of the numerical
implementation

In the applications presented in this paper we have considered
uniform Cartesian grids of resolution Δ in all directions, dis-
cretizing a rectangular volumeV (see Sect. 4 for the actual val-
ues of Δ andV in each case). We compute derivatives using the
standard second-order, central-difference operator, and we em-
ploy the relevant one-sided (i.e., forward or backward), second-
order differences at the boundaries of V. The only exception is
the computation of the divergence of Btest, since all test fields
are known in a volume that is larger than the selectedV (on lat-
eral and top boundaries). In this case, ∇ · Btest is computed using
the central differences also at the location of the lateral and top
boundaries ofV.

In the computation of volume integrals, the cell volume Δ3

is assigned to each internal node of the grid, whereas the cell
volume is reduce to half, one fourth, and one eighth for nodes
on the lateral surfaces, edges, and corners of V, respectively.
Similarly, in the computation of surface integrals, the cell sur-
face Δ2 is assigned to each node inside each side ofV, whereas
the cell surface is reduced to half and one fourth on edges and
corners of each side, respectively. Despite the accurate computa-
tion of integrals, the divergence theorem, Eq. (4), is not insured
to hold numerically, a property that requires special techniques,
like finite-volume discretizations, to be fulfilled.

Appendix B: Divergence cleaner

To construct a numerically solenoidal field [Bs] from a field [B]
let us define

Bs = ∇ × A, (B.1)

where A is the vector potential computed from B in the vol-
umeV = [x1, x2]× [y1, y2]× [z1, z2]. The vector potential A can
be derived as in Valori et al. (2012) using the gauge ẑ · A = 0,
yielding the expression

A = b + ẑ×
∫ z2

z
B dz′, (B.2)

where b ≡ (Ax(x, y, z = z2), Ay(x, y, z = z2), 0) is any solution of

0 = ∂xby − ∂ybx − Bz(x, y, z = z2). (B.3)

A direct substitution of Eq. (B.2) into Eq. (B.1) shows that

Bs ≡ ∇ × A = B + ẑ
∫ z2

z
(∇ · B) dz′, (B.4)

with the property that ∇ · Bs = 0. In other words, Eq. (B.4) nat-
urally separates B into a solenoidal part Bs and a nonsolenoidal
one, thus defining a divergence cleaner for B. The z-component
of B is changed throughout the volume except on the top bound-
ary, whereas the x- and y-components are unchanged. The am-
plitude of the modification to B at a given height z is given by
the cumulative effect of “magnetic charges” above that altitude.

Since only the z-component of the field is changed, the diver-
gence cleaner changes the x- and y-components of the current,
but not the z-component,

Js = J + (∂y,−∂x, 0)
∫ z2

z
(∇ · B) dz′, (B.5)

therefore the cleaner changes the injected magnetic flux but not
the injected electric current through the bottom layer. On the
other hand, since most of the test fields considered in this article
have the highest values of divergence close to the bottom bound-
ary, only the lower part of the field is changed significantly by
the cleaner.

Computation Bs requires numerical computation of an inte-
gral of the type G(z) =

∫ z2

z
f (t) dt, as in Eq. (B.4) for f = ∇ · B.

To achieve numerical accuracy in the solenoidal property of Bs,
G(z) must satisfy ∂zG(z) = − f (z) numerically, i.e., must sat-
isfy the numerical formulation of the fundamental theorem of
integral calculus in the employed discretization. For the second-
order central differences that are used in the analysis, this can be
obtained by the recurrence formulae

G(nz − 1) ≡ 0,

G(k) = G(k + 2) + 2Δ f (k + 1), 0 ≤ k ≤ nz − 3, (B.6)

where G(z) = G(z1 + kΔ) ≡ G(k) with k = 0, 1, 2, · · · , (nz − 1),
and Δ is the uniform spatial resolution in z.

The constraint ∂zG(z) = − f (z) in the second-order, central-
difference discretization does not fix the value of G(nz − 2).
To do that, we require that the divergence of Eq. (B.4) also
vanishes at the bottom boundary, i.e., (∇ · Bs)|z=z1 = 0. Here
the second-order divergence operator is computed by using a
second-order, forward derivative in the z-direction, i.e., defin-
ing the operator ∇os ≡ ∇x,y + ẑ∂os

z , where ∇x,y ≡ x̂∂x + ŷ∂y
and (∂os

z f )(0) = (−3 f (0)+ 4 f (1)− f (2))/2Δ. By using the recur-
rence formula Eq. (B.6), the condition on the bottom boundary
is transformed into the condition for G(nz − 2), yielding

G(nz−2) = Δ

⎡⎢⎢⎢⎢⎢⎢⎣ 2

⎛⎜⎜⎜⎜⎜⎜⎝
nz−2∑

even k= 2

−
nz−3∑

odd k= 1

⎞⎟⎟⎟⎟⎟⎟⎠ f (k) +
1
2

[ fos(0) − 3 f (1)]

⎤⎥⎥⎥⎥⎥⎥⎦ ,
where fos = ∇os · B. Such a numerical trick is only possible
if the volume is discretized by an even number of points in the
z-direction, therefore the analysis volumes employed in the arti-
cle were chosen to satisfy such a requirement.

Appendix C: Measures of ∇ ·B
The total divergence of a field B can be conveniently expressed
by a single number using the average 〈 | fi| 〉 over the grid nodes
of the fractional flux

fi ≡
∫
v
dv (∇ · B)i∫
∂v

dS |Bi|
, (C.1)

through the surface ∂v of a small volume v including the node i
(Wheatland et al. 2000). Taking a cubic voxel of side equal to Δ
as the small volume v centered on each node, the divergence in
the discretized volumeV of uniform and homogeneous resolu-
tion Δ is then given by

〈 | fi| 〉 = Δ6N

∑
i

|∇ · Bi|
|Bi| , (C.2)

where i runs over all N nodes in V. This metric depends on the
considered volume, so that values are strictly comparable only if
computed on equal volumes.
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